Stability of active zone components at the photoreceptor ribbon complex
نویسندگان
چکیده
PURPOSE Photoreceptor ribbon synapses translate light-dependent changes of membrane potential into graded transmitter release over several orders of magnitude in intensity. A specialized organelle at the active zone--the synaptic ribbon--is a key player in this process, and it is well known that the ribbon undergoes illumination and thus activity-dependent structural changes. However, the molecular basis for these changes is unknown. The aim of this study was to correlate the known ultrastructural ribbon changes to the distribution of proteins of the presynaptic ribbon complex. METHODS In an in vitro assay, two distinct structural ribbon states--club-shaped and spherical-shaped--were enriched and the distribution of presynaptic proteins at the rod photoreceptor ribbon complex was analyzed with immunocytochemistry and light and electron microscopy. RESULTS We show that structural changes of the ribbon correlate with the redistribution of selected presynaptic proteins. The disassembly of the ribbon complex seems to be a multistep process, which starts with the removal of spherical ribbon material while arciform density and active zone plasma membrane proteins remain largely unchanged at their synaptic location. Only later, in a second phase following the removal of ribbon material, the arciform density and plasma membrane proteins are redistributed from their synaptic localization and active zones disappear. CONCLUSIONS The results of our study show that photoreceptor ribbon and arciform density/plasma membrane components might be influenced differentially by activity-driven processes, thus providing a molecular basis for further investigation of regulatory and adaptive processes in photoreceptor ribbon synaptic transmission.
منابع مشابه
A local, periactive zone endocytic machinery at photoreceptor synapses in close vicinity to synaptic ribbons.
Photoreceptor ribbon synapses are continuously active synapses with large active zones that contain synaptic ribbons. Synaptic ribbons are anchored to the active zones and are associated with large numbers of synaptic vesicles. The base of the ribbon that is located close to L-type voltage-gated Ca(2+) channels is a hotspot of exocytosis. The continuous exocytosis at the ribbon synapse needs to...
متن کاملMolecular dissection of the photoreceptor ribbon synapse: physical interaction of Bassoon and RIBEYE is essential for the assembly of the ribbon complex
he ribbon complex of retinal photoreceptor synapses represents a specialization of the cytomatrix at the active zone (CAZ) present at conventional synapses. In mice deficient for the CAZ protein Bassoon, ribbons are not anchored to the presynaptic membrane but float freely in the cytoplasm. Exploiting this phenotype, we dissected the molecular structure of the photoreceptor ribbon complex. Iden...
متن کاملMolecular dissection of the photoreceptor ribbon synapse
The ribbon complex of retinal photoreceptor synapses represents a specialization of the cytomatrix at the active zone (CAZ) present at conventional synapses. In mice deficient for the CAZ protein Bassoon, ribbons are not anchored to the presynaptic membrane but float freely in the cytoplasm. Exploiting this phenotype, we dissected the molecular structure of the photoreceptor ribbon complex. Ide...
متن کاملMunc13-independent vesicle priming at mouse photoreceptor ribbon synapses.
Munc13 proteins are essential regulators of exocytosis. In hippocampal glutamatergic neurons, the genetic deletion of Munc13s results in the complete loss of primed synaptic vesicles (SVs) in direct contact with the presynaptic active zone membrane, and in a total block of neurotransmitter release. Similarly drastic consequences of Munc13 loss are detectable in hippocampal and striatal GABAergi...
متن کاملPurification of synaptic ribbons, structural components of the photoreceptor active zone complex.
Synaptic ribbons are plasma membrane-associated structural elements in photoreceptor synaptic terminals. They seem to act as high capacity "docking sites" of synaptic vesicles that provide the fusion sites of the photoreceptor synapse ("active zones"), with a large supply of immobilized synaptic vesicles rapidly available for exocytosis. Synaptic ribbons are regarded as a specialized type of pr...
متن کامل